Étude quantitative des déterminants technologiques d'acceptabilité de l'IA générative chez les experts-comptables au Maroc.

Auteurs

DOI :

https://doi.org/10.23882/ijdam.24173

Mots-clés :

IA générative, acceptabilité technologique, expertise comptable, Maroc

Résumé

Ce travail a pour objectif d’identifier et analyser les déterminants technologiques de l'acceptabilité de l'intelligence artificielle générative par les experts-comptables marocains. Face à l'émergence de ces technologies qui transforment les pratiques professionnelles, notre problématique interroge spécifiquement l'influence des facteurs technologiques sur leur acceptation. Notre méthodologie s'appuie sur une approche quantitative auprès de 262 experts-comptables inscrits à l'Ordre des Experts-Comptables du Maroc. Trois déterminants technologiques ont été examinés : la facilité d'utilisation perçue, l'utilité perçue et l'anthropomorphisme. Les résultats révèlent que la facilité d'utilisation constitue le facteur prédominant (β=0,390, p<0,001), suivi de l'utilité perçue qui exerce une influence modérée mais significative (β=0,170, p<0,01). Contrairement aux attentes théoriques, l'anthropomorphisme ne démontre pas d'effet significatif (β=0,087, p>0,05). Cette étude démontre que l'acceptabilité de l'IA générative repose principalement sur des considérations ergonomiques plutôt que sur des aspects relationnels ou anthropomorphiques. Ces résultats suggèrent l'importance de privilégier la simplicité d'utilisation et l'accessibilité dans le développement des solutions d'IA destinées aux professionnels de la comptabilité.

Références

Askell, A. et al. (2021). A General Language Assistant as a Laboratory for Alignment. https://doi.org/10.48550/arXiv.2112.00861

Bartneck, C., Kulić, D., Croft, E., & Zoghbi, S. (2009). Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. International Journal of Social Robotics, 1(1), 71-81. https://doi.org/10.1007/s12369-008-0001-3

Bartlett, M. S. (1954). A note on the multiplying factors for various chi square approximations. Journal of the Royal Statistical Society, 16(Series B), 296-298.

Benbasat, I., & Barki, H. (2007). Quo vadis TAM? Journal of the Association for Information Systems, 8(4), 211-218. https://doi.org/10.17705/1jais.00126

Blut, M., Wang, C., Wünderlich, N. V., & Brock, C. (2021). Understanding anthropomorphism in service provision: a meta-analysis of physical robots, chatbots, and other AI. Journal of the Academy of Marketing Science, 49(4), 632-658. https://doi.org/10.1007/s11747-020-00762-y

Chin, W. W. (1998). The partial least squares approach to structural equation modeling. Modern Methods for Business Research, 295(2), 295-336.

Churchill, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of Marketing Research, 16(1), 64-73. https://doi.org/10.2307/3150876

Clark, L. A., & Watson, D. (1995). Constructing validity: Basic issues in objective scale development. Psychological Assessment, 7(3), 309-319. https://doi.org/10.1037/1040-3590.7.3.309

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

Damerji, H., & Salimi, A. (2021). Mediating effect of use perceptions on technology readiness and adoption of artificial intelligence in accounting. Accounting Education, 30(2), 107-130. https://doi.org/10.1080/09639284.2021.1872036

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982

Feuerriegel, S., Hörchler, L., Kühl, N., & Seyfried, F. (2024). Changing the economics of content production: A research agenda on text-generating AI. Information Systems Research. https://doi.org/10.1287/isre.2023.0214

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Gotthardt, M., Koivulaakso, D., Paksoy, O., Saramo, C., Martikainen, M., & Lehner, O. (2020). Current state and challenges in the implementation of smart robotic process automation in accounting and auditing. ACRN Journal of Finance and Risk Perspectives, 9(1), 90-102. https://doi.org/10.35944/jofrp.2020.9.1.007

Gursoy, D., Chi, O. H., Lu, L., & Nunkoo, R. (2019). Consumers acceptance of artificially intelligent (AI) device use in service delivery. International Journal of Information Management, 49, 157-169. https://doi.org/10.1016/j.ijinfomgt.2019.03.008

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2019). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Sage.

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2022). The meta-analysis of partial least squares structural equation modeling (PLS-SEM) results in accounting research. Journal of International Financial Management & Accounting, 33(2), 182-211. https://doi.org/10.1111/jifm.12156

Hanetseder, C., Schulte-Nölke, H., & Amarouch, F. (2021). Digitalisierung in der Finanzbuchhaltung und die Zukunft des Berufsstandes. Der Betrieb, 74(19), 1017-1022.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8

Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36. https://doi.org/10.1007/BF02291575

KEBE, P. I., El Bettioui, R., & COMBAUDON , C. (2024). L’évaluation de la performance des projets de R&D de la logique d’efficacite economique a la logique institutionnelle: Cas d’une entreprise énergétique. IJDAM • International Journal of Digitalization and Applied Management, 1(2), 92–120. https://doi.org/10.23882/ijdam.24134

Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50-80. https://doi.org/10.1518/hfes.46.1.50_30392

Manita, R., Elommal, N., Baudier, P., & Hikkerova, L. (2020). The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change, 150, 119751. https://doi.org/10.1016/j.techfore.2019.119751

Nunnally, J. C. (1978). Psychometric theory (2nd ed.). McGraw-Hill.

Ordre des Experts-Comptables du Maroc [OEC]. (2024). Annuaire des experts-comptables inscrits au tableau de l'Ordre. Récupéré le 12/08/2024 de https://jecherchemonexpertcomptable.oecmaroc.com/

Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation awareness, mental workload, and trust in automation: Viable, empirically supported cognitive engineering constructs. Journal of Cognitive Engineering and Decision Making, 2(2), 140-160. https://doi.org/10.1518/155534308X284417

Rocchetta, S. (2024). Resilience and Innovation: A Conceptual Approach. In Innovation-Research and Development for Human, Economic and Institutional Growth. IntechOpen. https://doi.org/10.5772/intechopen.113842

Shanahan, M. (2024). Talking About Large Language Models. arXiv preprint arXiv:2212.03551.

Sharma, K., Sharma, R., & Sharma, S. (2021). Technology acceptance model for the use of artificial intelligence in accounting and auditing: A conceptual framework. Journal of Management Information and Decision Sciences, 24(8), 1-13.

Siau, K., & Wang, W. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47-53.

Skidmore, S. M., & Smith, S. D. (2024). Impact of Generative Artificial Intelligence on Accounting and Financial Reporting. The CPA Journal, 94(1), 75-85.

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 111-133. https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., ... & Lample, G. (2023). LLaMA: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Vărzaru, A. A. (2022). Perceptions of accountants regarding artificial intelligence use in management accounting. Journal of Accounting and Management Information Systems, 20(4), 709-736. https://doi.org/10.24818/jamis.2021.04005

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-5915.2008.00192.x

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540

Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412

Waytz, A., Cacioppo, J., & Epley, N. (2010). Who sees human? The stability and importance of individual differences in anthropomorphism. Perspectives on Psychological Science, 5(3), 219-232. https://doi.org/10.1177/1745691610369336

Waytz, A., Heafner, J., & Epley, N. (2017). The mind in the machine: Anthropomorphism increases trust in an autonomous vehicle. Journal of Experimental Social Psychology, 52, 113-117. https://doi.org/10.1016/j.jesp.2014.01.005

Téléchargements

Publiée

2025-03-12

Comment citer

AZIKI, A., FADILI, M. H., & EL BETTIOUI, R. (2025). Étude quantitative des déterminants technologiques d’acceptabilité de l’IA générative chez les experts-comptables au Maroc. IJDAM • International Journal of Digitalization and Applied Management, 2(1), 82–103. https://doi.org/10.23882/ijdam.24173